The Crouton Algorithm for Optimal Addition
Chains

Neill Clift*
April 26, 2025

Abstract

We describe a new algorithm for calculating optimal addition chains
that has very good performance for single values. The algorithm performs
well with or without a database of previously created optimal addition
chain lengths. Improved performance comes from the realization that
the end of an addition chain can be viewed as a vector addition chain.
The values generated by the start of the addition chain together with the
values from the trailing vector addition chain satisfy a linear Diophantine
equation. By broadening the search tree by differentiating cases based on
which constructed chain elements will be used in the future, a collection of
new pruning techniques are possible. Estimates of the minimum Hamming
weight of solutions to a linear Diophantine equation along with bounds
propagation techniques are used to prove that partially constructed chains
will not be successful and hence can be pruned.

Introduction

An addition chain is a finite sequence of integers (we call elements) 1 = ag <
ap < ... < a = n with a; = aj +ag, 7 > 7 > k > 0 for a target n
of length r. We will refer to an addition chain as formal if we explicitly
specify how each element is constructed. For example the chain 1,2, 3,4 has
two ways of constructing 4 since 4 = 2+ 2 = 1+ 3. We denote with [(n)
the length of the optimal (shortest) addition chain for n. We will call each
ai, © > 0 a step. We define A(n) = |loga(n)] and use it to partition the steps
into two cases. If A(a;) = A(a;—1) we say it is a small step. Otherwise we
must have A(a;) = A(a;—1) + 1 and call it a large step. A step of the form
a; = aj—1 +a;,1 > j is called a star step. If we denote with s(n) the number of
small steps in an optimal chain for n we must have s(n) = I(n) — A(n). We will
denote with v(n) the binary digit sum of n. The smallest target with an optimal
addition chain of length r is denoted with ¢(r). Knuth [I3] notes that proving

*NeillClift@live.com

via computer searches that I(c(r)) > r — 1 is particularly time consuming. On
the other hand finding an addition chain of length r for ¢(r) appears quite fast in
comparison. Scholz and Brauer [16, B] conjectured (Scholz-Brauer conjecture)
and partially proved that [(2" — 1) < I(n) +n — 1. Stolarsky [I7] noted that
he saw only equality in all values he could prove (I(2" — 1) = I(n) + n — 1).
Knuth and Stolarsky [12 [17] conjectured (Knuth-Stolarsky conjecture) that
v(n) < 28(m),

We say an addition sequence is an addition chain that contains a set of spec-
ified values. We will extend the notion of an optimal addition sequence using
I({a1,...,a,}) where a; > 1. Similarly we say a vector addition chain is a chain
of vectors produced via addition from a set of ¢ basis vectors (vg,v_1, ..., V_g+1):

V—g+1,V—q+25 -+, V0, V1, -+, Ud, Vi = U5 + g, 0 >] >k > —q+ 1

We define the length of the shortest vector addition chain as I([ay, ..., a,]) treat-
ing the basis vectors as all being the first element for calculating the length.
We will use the 2-adic valuation ve(n) = k, 2¥|n, 28+ t n which is value of the
least significant bit in n.

History of Computer Calculations

Knuth appears to have written the first computer program for calculating op-
timal addition chains in December 1963 (private communication). He used a
program written in Algol that ran on the Burroughs B5000 computer and cal-
culated all optimal addition chains for n < 1024. He did further calculations on
the CDC 6600 in assembler [14]. He worked backward from the target splitting
n =p+gq, p > q and used memoization of prior calculated I(n) values. The
properties of the function I(n) are very interesting and often counter intuitive.
As each new technique is developed to calculate optimal chains for larger targets
new properties often emerge. The first computer calculations for example found
I(n) =1(2n) with n = 191. Kato [11] found minimum length merges of addition
chains for n — k and k£ with 1 < k < % as well as enumerations of partitions
for n — 1 to find addition chains for n. A breadth first search (BFS) was used
by Chin and Tsai [5] to find optimal addition chains. They attempted to prune
by having all early steps being doubles but discovered that there are only two
optimal chains for 2617 and both include the element 5. Tsai [2I] found optimal
chains for batches of numbers and forced the construction of the final element
in a chain to be a star step. Brlek and Mallette [4] calculated batches of op-
timal addition chains and used bounds for addition chain elements. Using the
nomenclature developed by Thurber [I8] these would be the most simple class
1 (sequence A) bounds so that an element a; for an optimal addition chain for
n of length r is bounded by a; > {%] Bleichenbacher and Flammenkamp [9]
made huge strides by calculating all [(n) for n < 222 by using graph reductions
and memoization of computed I(m), m < n values for computing I(n). Thurber

[18] developed a set of bounds for the elements of an addition chain and the sum
of two consecutive elements. These can be used in an addition chain algorithm
when elements are selected to cut down the search space. They can also be
used to work out the minimum number of steps between two given values in
an addition chain. Bahig [I] outlined conditions where steps must be star and
limits on the types of non-star steps and hence cut down the time needed to
generate branches in the search tree. Clift [6] calculated batches of addition
chains using graph enumeration avoiding sub-graphs proven to not be present
in optimal chains.

Broadening the Search Tree

Prior work[19] has shown that the end of an addition chain can be viewed as
a vector addition chain that consumes some of the earlier values to get to the
target. We can show that the number of elements from the start of the chain
that are consumed must be small and related to the small step count of the
target. With this in mind we will describe an algorithm that splits the problem
such that a small packet of numbers (called a crouton) is selected at each stage
that must be used by the chain in the future. A crouton can also be thought
of as the temporary variables needed to compute the rest of the chain. This
will make the search tree broader but enable new pruning techniques. We will
then show how to bound the values in the vector addition chain such that many
cases can be rejected early.

Recursive Algorithm Outline

We now describe the initial state and recursive transformations the new algo-
rithm uses to traverse the search space. We will be searching for an optimal
addition chain A = by < by < ... < by = n for n of length d < i(n). Obviously
when d < [(n) the search for a chain will fail. We will say we are at depth r with
0 < r < d and mean we have generated the sequence 1 = by < by < ... < b,.. At
depth r though we will not keep or use all b;,0 < i < r but instead we will have
chosen to use a subset of these values a1 < as < ... < a, with z > 1. There
must be a mapping « such that a; = by ;). Each a; < n must be consumed in
at least one later addition chain step 8(i) > r so bg(;) = a; + b; with j < 3(i).

Initial State

We start with a single crouton < 1 >. So a; =by =1 and z = 1.

Recursive Transformation

If we start with a crouton < aj,...,a, > we form a new element a,y; =
a; + aj, v > j. From this we potentially can form up to four new croutons to
search:

< @G1,...,0a,4+1 >The new crouton has z + 1 elements.

< Q1y...,Qi—1,0Qi42,...,0,41 > The new crouton has z elements since ele-
ment a; is dropped.

<ai,...,0j—1,0j42,...,0,41 > The new crouton has z elements since ele-
ment a; is dropped.

<A1y ey Q1 Qg 2y e vy Gi1, Qig 25 - - -, Gzq1 >, © 7 J The new crouton has

z — 1 elements since elements a; and a; are dropped.
It should be clear from these transformations that in the crouton < ...,a, > at
depth r must have a, = b,.

Termination State

The final crouton at depth d must be < a; = n > if the search is successful.
The initial and termination state along with the fact that the recursive step can
only increase or decrease z by at most 1 leads to the following simple bounds:

z <min(r+1,d —r+1)

Bounding the Crouton’s Size

Let < ay,as,...,a, > be a crouton with z > 1. Let these a; be part of an
optimal addition chain within the first r + 1 values for n with I(n) = d. Hence
{a;|1 <i <z} C A where A is an addition chain for n. Further we will specify
that the members of the crouton are the only elements in the addition chain
within the first 41 values that are used in the rest of the chain. We specify that
all elements in the crouton must be used later in the chain. From the requirement
that A is an optimal chain we must have [({a1, ag, ..., a,}) = r. The correspond-
ing vector chain that consumes the crouton must have I([x1,z2,...2;]) =d —7r
and hence [({z1,22,...2,}) =d —r — z+ 1 [I5]. We know that

z
n < 2d—7"—z+1 Za‘i
=1

< 2d—r—z+1 Z 2r+1—i
i=1
S 2d72z+2(2z _ 1)

From s(n) = I(n) — A(n) we obtain

s(n) =d— A(n)
> d—)\(2d72z+2(22 o 1))
> 9222 \(2° — 1)
>z—1

From this we can see that the crouton remains small since s(n) is slow growing.

The Frobenius Equation

Our two addition sequence problems are linked because the vector addition
chain consumes the elements of the crouton to reach the target. So from
I({a1,a2,...,a.}) =r and I({z1,22,...2,}) =d —r — z + 1 we know that:

i=1

We can prune the search tree by proving there are no solutions to the Frobenius
equation when limited by the complementary addition sequence problem. The
most obvious way of eliminating cases uses the GCD:

GCD(ay,az,...,a;)|n

The many divisions needed to calculate the GCD make this test better done
after the following bounds on ;. For example we must have

1 § x; S 2d77“72:+1

We can do much better than this though if we can estimate a lower bound for
s({z1,x2,...,2.}). We can do this by getting a lower bound for

max v(z;)
i=1

We start with

So we have

aieo(e) 2 | @

We have a number of upper bounds on v(n) based on s(n) which we will denote
by s;(n). If s(n) = 0,1 then simple bounds on n yield v(n) = 1,2 respectively.
See [I3] pp 468. For the more adventurous see [7] were the result is stated
but without much detail. The case v(n) = 3 was proved to have s(n) = 2 in
[10]. Knuth in [I3] pp 468-469 outlines the v(n) = 3,4 cases in Theorem B
and C showing s(n) > 2. Thurber in [20] did a detailed analysis of the case
s(n) = 3 and showed v(n) < 8. Flammenkamp in [§] wrote a computer program
to enumerate the s(n) = 3 cases. The author wrote a computer program similar
to that of Flammenkamp but using a different underlying finite set to represent
addition chains of fixed small step count. With this the detailed enumeration
of s(n) = 4,5 was possible yielding v(n) < 16,32 Small Step Enumeration. The
number of cases explodes as the small step count increases. By limiting the
enumeration to those cases that could violate the Knuth-Stolarsky conjecture
the author also covered the case s(n) = 6 and found v(n) < 64. This gives us
overall:

Immediately we can see that

1<z < 2d—7’—z+2—rnaxf=1 si(xi)

For max?_, s;(z;) < 6 we have max?_, v(z;) < 2Ma%i=15(%:) We can therefor
refine the limit. The maximum value in a chain of length [with at least s =
max?_; s;(x;) small steps must be:

x; S2l75 4 217871 Lt 2l75725+1
<2l+1—s—25 (225 _ 1)

http://www.additionchains.com/SmallStepEnumeration.html

d—r— 9 z . _2maxf:1 sp(xy) 2maxi2:1 sp(xy)
1 S x; S 2 r—z+2—max;_, si(x;) (2 _ 1) (3)

The following table shows a hypothetical limit and how it changes as the small
step count of the x;values increases:

[t] zi < |
1000000000000000000004
110000000000000000004
11110000000000000004
1111111100000000002
111111111111111109

| wl |~ o

Many cases are rejected in practice by applying this bound to the original Frobe-
nius equation:

< (miger,) (Z) (4)

Practically this inequality is not satisfied in a significant proportion of cases and
search times are reduced considerably. This pruning will be made clearer with
an example.

When trying to find an optimal chain for 42833 of length 19 (which must succeed
since computer calculations show 1(42833) = 19) we get to a depth r = 8 with
the crouton< 5,32,67 >. We could have gotten to this point in the search with
the partial addition chain 1,2, 3,5, 8,16, 32, 64, 67.

From [I] we have the following Frobenius equation to solve:

dx1 + 32x2 + 6723 = 42833
101527 4+ 100000222 + 1000011523 = 10100111010100012

From [2{ max?_; v(x;) > [%—‘ = [8] = 2. So at least one x; must have
v(x;) > 2 so that max?_; s;(x;) > 1 and hence that s({z1,z2,23}) > 1 and so
from 3] z; < 384. We can immediately abandon this search since from [f we have

the contradiction 42833 < 384(5 + 32 4 67) = 39936.

Better Estimates for max?_, v(z;)

Bounding the size of the max? ; v(x;) has such a large effect on performance
that trying to get a better estimate of max? ; v(x;) can be worthwhile even it
it takes a non-trivial amount of computation.

If we say that n mod m represents the least non-negative element from the
residue class modulo m. It is curios that:

v(n mod (2 — 27)) < w(n), i >j (5)

To prove this we will assume a smallest counter example v(r) > v(n) with
r =nmod (2 —27). We must have n > r. We will first assume that the binary
representation of n contains a power of two (2+* k > 0). Since 2itF = 21k —
(2i+k — 27+F) (mod (2! — 27)). We have a contradiction since v(n — 2+~ 4 27+F)
would be a smaller counter example from the residue class:

v(n — 207K 4 2TTRY <yy(n — 20FR) 4y (29FR)
<wv(n)—1+1
<wv(n)
<v(r)

We may therefore assume that 2/ — 2/ < n < 2¢=! — 1. The binary represen-
tation of n must be 271 +2i=2 4 ... + 2/ + ... and we obtain the following
contradiction:v(n — (2° — 27)) < v(n) < v(r) since n — (2° — 27) < n.

From this we obtain the following inequality:

max v(x;) > max v(z; mod m) > v(n mod m)

,m=2 -2 j>k
i=1 i=1 {Zf_l v(a; mod m)-‘ J

(6)

n mod m :(Z a;x;) mod m
i=1

:(i(ai mod m)(z; mod m)) mod m
v(n mod m) :v((é(ai mod m)(z; mod m)) mod m)

<v(§j;(az— mod m)(x; mod m))

< 2 v(a; mod m)v(z; mod m)

< m:alx v(z; mod m) Z; v(a; mod m)

This is a generalization of the realization that the bottom k (28 = 2k+1 — 2k)
bits of n can be determined only by the bottom k bits of a; and z;. This
will be clear in the following example. With the crouton < 5,8 > at depth
r = 4 while trying to find an addition chain for n = 35. From [2] we would

have max?_; v(z;) > [%—‘ = 1. If we instead look at the bottom two

=1

bits (k = 2) then max_, v(z;) > [%W = [2] = 2. This window
i=1 i

method will also detect in-feasibility when 2¥|GCD(ay, as, ... ,a.) but 2¥ { n.
An example from the more general case has a crouton of < 25,84 >at depth
r = 8 while searching for an addition chain for n = 42163 of length d = 19 <
1(42163) = 20. This search will fail. We could have encountered this situation
via the partial chain 1,2,4,8,16,17,25,42,84. With m = 12 we get:

v(n mod 12) w _ m .,

max v(z;) >
i=1

- {Ef_lv(ai mod 12)

So we must have s({z1,z2}) > 2 and so from i < 480. This is not enough
to prune this path completely since (25 + 84)480 > 42163 but it limits the
possibilities for the x;.

We may obtain a similar bound by multiplying both sides of [I| by a constant m:

2:1 = {z%-‘

Practically only m = 3 seems to allow performance improvements. For example
with the crouton < 34,43,86 > at depth r = 9, n = 58951 and d = 20 we

obtain: [e] [w]_,
) 2 [g | <[

So we must have s({z1,22}) > 1 and so from [Br; < 384.

(7)

Enumerating Solutions

For problems that appear small it helps the performance of the algorithm to
attempt to enumerate all the solutions to the Frobenius equation and attempt
to eliminate them by finding a lower bound for I({z1,...,z,}). Knowing the
bounds of x; and also the bounds of s({z1,...,x.}) enumerating problems with
values for each [; < z; < u; limiting sub-problems to ~2000 works well. Trying
to solve the Frobenius equation directly using the extended GCD algorithm is
too expensive. Presumably because of the many divides needed. Improving
l;,u; via the standard techniques of constraint satisfaction appears to be too
slow as well. It’s well known in the field of constraint satisfaction that we select
the most constrained x; and that would correspond to the largest a;. It turns
out we can do better than this and instead select the a; with smallest 2-adic
valuation va(a;). The idea being that some of the low order bits of x; can be

calculated using multiplicative inverses.

We will follow an example to see the sort of pruning done. We have the crouton
< 16,17,67 > at depth r = 8 for an addition chain for n = 152557 of length
d =21 < 1(152557) = 22. So this search will eventually fail. We have a; = 16,

as = 17 and a3 = 67. Simple bit counting has {%-‘ = 2. So

u; < 1536 and I; > 1. Using 4| we know that s({x1,z2,23}) = 1 and hence
v(x;) < 2. With these bounds we can compute the initial bounds for x3:

1521 < 23 < 1536
1536 < x5 < 1536 (using v(z3) < 2)

The value x3 = 1536 can immediately be dismissed since v(152557—67.1536) = 9
and v(a121 + asxe) < 6. If this were not the case we would set a3 = 1536
and repeat the bounding process for as with n = 152557 — 67.1536. Pruning
techniques like the binary digit count of x; work well because they can eliminate
a large number of possibilities quickly. This examples shows another way to
reduce the range via the most significant bit of ug = 1536. If we assume that
T3 > 2A(us) then

6

Y

v(n — azxs)
v(n — 22 g — ag(xg — 22(18)))

(n— 2>‘(“3)a3) —v(ag)(v(zs) — 1)

v
9

v IV

So x3 < 1024. This process can obviously be repeated for the new most signifi-
cant bit of ug if there is still a valid range for z3.

Results

To see the potential of this pruning technique in searching for addition chains I
took the code used by Ed Thurber to investigate the number of optimal addition
chains for n defined as NMC(n). The code had a simple stack of numbers
representing the end of a partial addition chain at various depths. New elements
are pushed onto the stack by summing all previous elements and pushing them
on the stack if they satisfy the addition chain bounds. Duplicates are removed.
The code was changed to push croutons on a stack and prune not only with the
addition chain bounds but also the bounds described by [2} [6] with modulo
2% and [7| with the multiplier of 3. The new code searches for formal addition
chains were chain construction is differentiated by how elements are constructed
as well as their value. So we must filter out duplicates. Despite this we see a
big improvement in performance as show in table .

Bahig [2] conjectured that there is always an optimal addition chain for n with

the last {@J steps star. The first counter example is 5979345 whose 16 optimal

addition chains of length 27 each have two small steps:

10

Table 1: Times to Calculate NMC values

’ n < \ Old Seconds \ New Seconds ‘

28 0.3 0.2
29 2.8 1.1
210 26.8 6.0
ol 251.1 32.8
212 2676.0 199.4
213 27248.6 1226.5

Table 2: Effects of different Pruning Techniques

y n | SIN [CR [CR+G | CR+GB | CR+GBD |
5979345 All chains 1.1 1.7 0.7 0.1 <0.1
5(375494703) > 6 554.4 | 886.1 | 310.5 29.3 5.2
s(c(27) = 2211837) > 5 | 6.3 10.2 4.1 0.6 0.1
s(c(30) = 14143037) > 6 | 49.8 | 85.3 30.3 4.6 0.8
5(c(32) = 46444543) > 6 | 292.3 | 483.8 | 168.5 16.0 2.5
5(6580895885) > 6 549.4 | 945.0 | 286.2 33.1 6.2
5(6442718499) > 6 714.3 | 1158.7 | 383.8 38.4 7.3
5(6442517597) > 6 652.0 | 1125.3 | 336.1 27.4 5.3
5221 —1)>6 53.9 | 100.5 | 29.7 0.3 0.1
52 —1)>6 100.5 | 188.5 | 52.6 0.5 0.1
s5(25T—1)>6 1352 | 257.2 | 68.6 0.2 0.1
5239 —1)>6 179.4 | 340.6 | 112.0 0.1 <0.1
s —1)>6 234.7 | 449.7 | 113.1 <0.1 <0.1

STN - Single value algorithm [6]

CR - Crouton, +G with GCD pruning, +B bounds [4] +D memoized I(n) data.

124816 17 32 49 81 162 324 648 1296 2592 5184 5201 10368 20736 25937

46673 93346 186692 373384 746768 1493536 2987072 2992273 5979345

References

[1] Hatem M Bahig. Improved generation of minimal addition chains. Com-

puting, 78(2):161-172, 2006.

[2] Hatem M Bahig. Star reduction among minimal length addition chains.

Computing, 91(4):335-352, 2011.

[3] Alfred Brauer. On addition chains. Bulletin of the American Mathematical

Society, 45(10):736-739, 1939.

11

Table 3: Time vs. Binary Digit Sum

n | CR+GE | CR+GED |
s —-1)>7] 1044 36.8
s(2%—-1)>7 61.9 20.6
525 —-1)>7 60.2 21.7
s(2T—1)>7 [41.2 20.6
s(2%8—1)>7] 480 16.7
s(29 -1)>7 39.9 35.8
s(261 —1)>7 31.8 30.5
s(202-1)>7 37.6 14.5
s(2% —1)>7 334 16.1

[4] R. Brlek, S.;Mallette. Sur le calcul des chaA®nes d’additions opti-
males. Atelier de combinatoire franco-quA(@©becois (6-7 Mai 1991, Bor-
deauz, France), pages 71-85, 1992. Publ. du LACIM 10, ISBN 2-89276-
101-8.

[5] YH Chin and YH Tsai. Algorithms for finding the shortest addition chain.
In Proceedings of national computer symposium, Kaoshiung, Taiwan, De-
cember, pages 1398-1414, 1985.

[6] Neill Michael Clift. Calculating optimal addition chains. Computing,
91(3):265-284, March 2011.

[7] E. de Jonquiéres. Question 49 (h. dellac). L’Intermédiaire des Mathémati-
ciens, 1:162-164, 1894.

[8] Achim Flammenkamp. Integers with a small number of minimal addition
chains. Discrete mathematics, 205(1):221-227, 1999.

[9] D. Bleichenbacher; A. Flammenkamp. An efficient algorithm for computing
shortest addition chains. 1997.

[10] AA Gioia, MV Subbarao, and M Sugunama. The scholz-brauer problem in
addition chains. Duke Math. J, 29:481-487, 1962.

[11] H. Kato. On Addition Chains. PhD thesis, University of Southern Califor-
nia, 1970.

[12] Donald E Knuth. The art of computer programming, 2: seminumerical
algorithms, Addison Wesley. 1969.

[13] Donald E Knuth. The art of computer programming, 2: seminumerical
algorithms, Addison Wesley. 1998.

[14] Donald Ervin Knuth. Calculations on addition chains. 1969.

[15] Jorge Olivos. On vectorial addition chains. J. Algorithms, 2(1):13-21, 1981.

12

[16] Arnold Scholz. Aufgabe 253 (problem 253). Jahresbericht der deutschen
Mathematiker- Vereinigung, 47(2):41-42, 1937.

[17] Kenneth B Stolarsky. A lower bound for the scholz-brauer problem. Canad.
J. Math, 21:675-683, 1969.

[18] Edward G. Thurber. Efficient generation of minimal length addition chains.
SIAM Journal on Computing, 28(4):1247-1263, 1999.

[19] Edward G. Thurber and Neill M. Clift. Addition chains, vector chains, and
efficient computation. Discrete Mathematics, 344(2):112200, feb 2021.

[20] E.G. Thurber. The Scholz-Brauer Problem on Addition Chains. PhD thesis.

[21] Y.H. Tsai. A study on some addition chain problems. Master’s thesis,
National Tsing-Hua University, Hsinchu, Taiwan, 1985.

13

