Repairing the Scholz-Brauer Conjecture

For mathematical definitions see the top-level Addition Chains.

It does seem to be possible to repair the conjecture for some non-Hansen numbers. This page will list the early ones as I try to find a general approach. So far, each chain is hand generated, and the techniques used differ from chain to chain.
See the table in my page on star and \(l^0\) chains for a key to what's been done: Star and L0.
 

For the first non-Hansen we repair the gap in a way that seems ungeneralizable. We have an addition chain for \(n\) containing a sequence \(a, a+1, a+1+b,2a,2a+c\) and we transform it to a chain for \(2^n-1\) with the sequence:

\(2^a-1,...,2^a(2^a-1),2^{2a}-1,2^{2a}-1+2^a(2^a-1),2^a(2^{a+1}-1),2^{a-b}(2^{a+1+b}-1)\)

The introduction of \(2^a(2^{a+1}-1)\) and \(2^{a-b}(2^{a+1+b}-1)\) into the addition chain will require some latter steps to remove these extra powers of two. Not all chains will be able to do this.

We will use this chain:

1 2 4 8 16 32 64 65 97 128 225 353 706 1412 2824 5648 11296 22592 45184 90368 180736 180801 361537 723074 1446148 2892296 2892393 5784689

Elements How First Element Formed Elements In Row Chain Length So Far
\(1,...,2\) 2 1
\(2^2-1,...,2^2\cdot (2^2-1)\) \(2+1\) 3 4
\(2^4-1,...,2^4\cdot (2^4-1)\) \(2^2\cdot (2^2-1)+2^2-1\) 5 9
\(2^8-1,...,2^8\cdot (2^8-1)\) \(2^4\cdot (2^4-1)+2^4-1\) 9 18
\(2^{16}-1,...,2^{16}\cdot(2^{16}-1)\) \(2^8\cdot (2^8-1)+2^8-1\) 17 35
\(2^{32}-1,...,2^1\cdot (2^{32}-1)\) \(2^{16}\cdot(2^{16}-1)+2^{16}-1\) 33 68
\(2^{64}-1,...,2^{64}\cdot(2^{64}-1))\) \(2^{32}\cdot(2^{32}-1)+2^{32}-1)\) 65 133
\(2^{128}-1\) \(2^{64}\cdot(2^{64}-1)+2^{64}-1\) 1 134
\(2^{128}-1+2^{64}\cdot(2^{64}-1)\) \(2^{128}-1+2^{64}\cdot(2^{64}-1)\) 1 135
\(2^{64}\cdot(2^{65}-1)\) \(2^{128}-1+2^{64}\cdot(2^{64}-1)+1\) 1 136
\(2^{32}\cdot(2^{97}-1),...,2^{128}\cdot(2^{97}-1)\) \(2^{64}\cdot(2^{65}-1)+2^{32}\cdot(2^{32}-1)\) 97 233
\(2^{225}-1,...,2^{128}\cdot(2^{225}-1)\) \(2^{128}\cdot(2^{97}-1)+2^{128}-1\) 129 362
\(2^{353}-1,...,2^{353}\cdot(2^{353}-1)\) \(2^{128}\cdot(2^{225}-1)+2^{128}-1\) 354 716
\(2^{706}-1,...,2^{706}\cdot2^{706}-1)\) \(2^{353}\cdot(2^{353}-1)+2^{353}-1\) 707 1423
\(2^{1412}-1,...,2^{1412}\cdot(2^{1412}-1)\) \(2^{706}\cdot(2^{706}-1)+2^{706}-1\) 1413 2836
\(2^{2824}-1,...,2^{2824}\cdot(2^{2824}-1)\) \(2^{1412}\cdot(2^{1412}-1)+2^{1412}-1\) 2825 5661
\(2^{5648}-1,...,2^{5648}\cdot(2^{5648}-1)\) \(2^{2824}\cdot(2^{2824}-1)+2^{2824}-1\) 5649 11310
\(2^{11296}-1,...,2^{11296}\cdot(2^{11296}-1)\) \(2^{5648}\cdot(2^{5648}-1)+2^{5648}-1\) 11297 22607
\(2^{22592}-1,...,2^{22592}\cdot(2^{22592}-1)\) \(2^{11296}\cdot(2^{11296}-1)+2^{11296}-1\) 22593 45200
\(2^{45184}-1,...,2^{45184}\cdot(2^{45184}-1)\) \(2^{22592}\cdot(2^{22592}-1)+2^{22592}-1\) 45185 90385
\(2^{90368}-1,...,2^{90368}\cdot(2^{90368}-1)\) \(2^{45184}\cdot(2^{45184}-1)+2^{45184}-1\) 90369 180754
\(2^{180736}-1,...,2^{129}\cdot(2^{180736}-1)\) \(2^{90368}\cdot(2^{90368}-1)+2^{90368}-1\) 130 180884
\(2^{64}\cdot(2^{180801}-1),...,2^{180736}\cdot(2^{180801}-1)\) \(2^{129}\cdot(2^{180736}-1)+2^{64}\cdot(2^{65}-1)\) 180673 361557
\(2^{361537}-1,...,2^{361537}\cdot(2^{361537}-1)\) \(2^{180736}\cdot(2^{180801}-1)+2^{180736}-1\) 361538 723095
\(2^{723074}-1,...,2^{723074}\cdot(2^{723074}-1)\) \(2^{361537}\cdot(2^{361537}-1)+2^{361537}-1\) 723075 1446170
\(2^{1446148}-1,...,2^{1446148}\cdot(2^{1446148}-1)\) \(2^{723074}\cdot(2^{723074}-1)+2^{723074}-1\) 1446149 2892319
\(2^{2892296}-1,...,2^{129}\cdot(2^{2892296}-1)\) \(2^{1446148}\cdot(2^{1446148}-1)+2^{1446148}-1\) 130 2892449
\(2^{32}\cdot(2^{2892393}-1),...,2^{2892296}\cdot(2^{2892393}-1)\) \(2^{129}\cdot(2^{2892296}-1)+2^{32}\cdot(2^{97}-1)\) 2892265 5784714
\(2^{5784689}-1\) \(2^{2892296}\cdot(2^{2892393}-1)+2^{2892296}-1\) 1 5784715

This chain has a length of 5784715. \(l(2^{5784689}-1)\le 5784715=l(5784689)+5784689-1=27+5784689-1=5784715\).

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,
680564733841876926908302470789826871295, // 2^128-1 + 2^64*(2^64-1)
2^64*(2^65-1),
2^32*(2^97-1),...,2^128*(2^97-1),
2^225-1,...,2^128*(2^225-1),
2^353-1,...,2^353*(2^353-1),
2^706-1,...,2^706*2^706-1),
2^1412-1,...,2^1412*(2^1412-1),
2^2824-1,...,2^2824*(2^2824-1),
2^5648-1,...,2^5648*(2^5648-1),
2^11296-1,...,2^11296*(2^11296-1),
2^22592-1,...,2^22592*(2^22592-1),
2^45184-1,...,2^45184*(2^45184-1),
2^90368-1,...,2^90368*(2^90368-1),
2^180736-1,...,2^129*(2^180736-1),
2^64*(2^180801-1),...,2^180736*(2^180801-1),
2^361537-1,...,2^361537*(2^361537-1),
2^723074-1,...,2^723074*(2^723074-1),
2^1446148-1,...,2^1446148*(2^1446148-1),
2^2892296-1,...,2^129*(2^2892296-1),
2^32*(2^2892393-1),...,2^2892296*(2^2892393-1),
2^5784689-1

For the second non-Hansen we have many chains that don't work but at least one does:

1 2 4 8 16 32 64 65 97 128 225 353 706 1412 2824 5648 11296 22592 45184 90368 180736 361472 361537 723009 1446018 2892036 5784072 5784169 11568241

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,
680564733841876926908302470789826871295, // 2^128-1 + 2^64*(2^64-1)
2^64*(2^65-1),
2^32*(2^97-1),...,2^128*(2^97-1),
2^225-1,...,2^128*(2^225-1),
2^353-1,...,2^353*(2^353-1),
2^706-1,...,2^706*(2^706-1),
2^1412-1,...,2^1412*(2^1412-1),
2^2824-1,...,2^2824*(2^2824-1),
2^5648-1,...,2^5648*(2^5648-1),
2^11296-1,...,2^11296*(2^11296-1),
2^22592-1,...,2^22592*(2^22592-1),
2^45184-1,...,2^45184*(2^45184-1),
2^90368-1,...,2^90368*(2^90368-1),
2^180736-1,...,2^180736*(2^180736-1),
2^361472-1,...,2^129*(2^361472-1),
2^64*(2^361537-1),...,2^361472*(2^361537-1),
2^723009-1,...,2^723009*(2^723009-1),
2^1446018-1,...,2^1446018*(2^1446018-1),
2^2892036-1,...,2^2892036*(2^2892036-1),
2^5784072-1,...,2^129*(2^5784072-1),
2^32*(2^5784169-1),...,2^5784072*(2^5784169-1),
2^11568241-1

This chain has length 11568268. \(l(2^{11568241}-1)\le 11568268=l(11568241)+11568241-1=28+11568241-1=11568268\).

The 4th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,
2^32-1+2^16*(2^16-1),
2^16*(2^17-1),
2^8*(2^25-1),...,2^32*(2^25-1),
2^57-1,...,2^32*(2^57-1),
2^89-1,...,2^89*(2^89-1),
2^178-1,...,2^178*(2^178-1),
2^356-1,...,2^356*(2^356-1),
2^712-1,...,2^712*(2^712-1),
2^1424-1,...,2^1424*(2^1424-1),
2^2848-1,...,2^2848*(2^2848-1),
2^5696-1,...,2^5696*(2^5696-1),
2^11392-1,...,2^11392*(2^11392-1),
2^22784-1,...,2^33*(2^22784-1),
2^16*(2^22801-1),...,2^22784*(2^22801-1),
2^45585-1,...,2^45585*(2^45585-1),
2^91170-1,...,2^91170*(2^91170-1),
2^182340-1,...,2^182340*(2^182340-1),
2^364680-1,...,2^364680*(2^364680-1),
2^729360-1,...,2^729360*(2^729360-1),
2^1458720-1,...,2^1458720*(2^1458720-1),
2^2917440-1,...,2^2917440*(2^2917440-1),
2^5834880-1,...,2^33*(2^5834880-1),
2^8*(2^5834905-1),...,2^5834880*(2^5834905-1),
2^11669785-1

This chain has length 11669812. \(l(2^{11669785}-1)\le 11669812=l(11669785)+11669785-1=28+11669785-1=11669812\).
 

For the 5th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,
2^32-1+2^16*(2^16-1),
2^16*(2^17-1),
2^8*(2^25-1),...,2^32*(2^25-1),
2^57-1,...,2^32*(2^57-1),
2^89-1,...,2^89*(2^89-1),
2^178-1,...,2^178*(2^178-1),
2^356-1,...,2^356*(2^356-1),
2^712-1,...,2^712*(2^712-1),
2^1424-1,...,2^1424*(2^1424-1),
2^2848-1,...,2^2848*(2^2848-1),
2^5696-1,...,2^5696*(2^5696-1),
2^11392-1,...,2^11392*(2^11392-1),
2^22784-1,...,2^33*(2^22784-1),
2^8*(2^22809-1),...,2^22784*(2^22809-1),
2^45593-1,...,2^45593*(2^45593-1),
2^91186-1,...,2^91186*(2^91186-1),
2^182372-1,...,2^182372*(2^182372-1),
2^364744-1,...,2^364744*(2^364744-1),
2^729488-1,...,2^729488*(2^729488-1),
2^1458976-1,...,2^1458976*(2^1458976-1),
2^2917952-1,...,2^2917952*(2^2917952-1),
2^5835904-1,...,2^33*(2^5835904-1),
2^16*(2^5835921-1),...,2^5835904*(2^5835921-1),
2^11671825-1

This chain has length 11671852. \(l(2^{11671825}-1)\le 11671852=l(11671825)+11671825-1=28+11671825-1=11671852\).

For the 6th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,
2^32-1+2^16*(2^16-1),
2^16*(2^17-1),
2^8*(2^25-1),...,2^32*(2^25-1),
2^57-1,...,2^32*(2^57-1),
2^89-1,...,2^89*(2^89-1),
2^178-1,...,2^178*(2^178-1),
2^356-1,...,2^356*(2^356-1),
2^712-1,...,2^712*(2^712-1),
2^1424-1,...,2^1424*(2^1424-1),
2^2848-1,...,2^2848*(2^2848-1),
2^5696-1,...,2^33*(2^5696-1),
2^16*(2^5713-1),...,2^5696*(2^5713-1),
2^11409-1,...,2^11409*(2^11409-1),
2^22818-1,...,2^22818*(2^22818-1),
2^45636-1,...,2^45636*(2^45636-1),
2^91272-1,...,2^91272*(2^91272-1),
2^182544-1,...,2^182544*(2^182544-1),
2^365088-1,...,2^365088*(2^365088-1),
2^730176-1,...,2^730176*(2^730176-1),
2^1460352-1,...,2^1460352*(2^1460352-1),
2^2920704-1,...,2^2920704*(2^2920704-1),
2^5841408-1,...,2^33*(2^5841408-1),
2^8*(2^5841433-1),...,2^5841408*(2^5841433-1),
2^11682841-1,

This chain has length 11682868. \(l(2^{11682841}-1)\le 11682868=l(11682841)+11682841-1=28+11682841-1=11682868\).

For the 7th non-Hansen (23097633) with \(l(23097633)=29\) we use a different technique. We have an addition chain for \(n\) containing a sequence \(a, a+b, a+b+c,2a\) and we transform it to a chain for \(2^n-1\) with the sequence:

\(2^a-1,...,2^a(2^a-1),2^{a-b}(2^{a+b}-1),2^{a-b-c}(2^{a+b+c}-1),2^{2a}-1\). For this to work we must have \(a\ge b+c,2b\ge a, b+2c\ge a\).

We show below a chain of length 23097661.

Elements How First Element Formed Elements In Row Chain Length So Far
\(1,...,2\) 2 1
\(2^2-1,...,2^2\cdot (2^2-1)\) \(2+1\) 3 4
\(2^4-1,...,2^4\cdot (2^4-1)\) \(2^2\cdot (2^2-1)+2^2-1\) 5 9
\(2^8-1,...,2^8\cdot (2^8-1)\) \(2^4\cdot (2^4-1)+2^4-1\) 9 18
\(2^{16}-1,...,2^{16}\cdot(2^{16}-1)\) \(2^8\cdot (2^8-1)+2^8-1\) 17 35
\(2^{32}-1,...,2^1\cdot (2^{32}-1)\) \(2^{16}\cdot(2^{16}-1)+2^{16}-1\) 2 37
\(2^2\cdot (2^{32}-1),...,2^{32}\cdot (2^{32}-1)\) \(2^1\cdot (2^{32}-1)+2^1\cdot (2^{32}-1)\) 31 68
\(2^{64}-1,...,2^{64}\cdot (2^{64}-1)\) \(2^{32}\cdot (2^{32}-1)+2^{32}-1\) 65 133
\(2^{128}-1,...,2^{128}\cdot (2^{128}-1)\) \(2^{64}\cdot (2^{64}-1)+2^{64}-1\) 129 262
\(2^{256}-1,...,2^{256}\cdot(2^{256}-1)\) \(2^{128}\cdot (2^{128}-1)+2^{128}-1\) 257 519
\(2^{512}-1,...,2^{512}\cdot(2^{512}-1)\) \(2^{256}\cdot(2^{256}-1)+2^{256}-1\) 513 1032
\(2^{1024}-1,...,2^{1024}\cdot(2^{1024}-1)\) \(2^{512}\cdot(2^{512}-1)+2^{512}-1\) 1025 2057
\(2^{2048}-1,...,2^{2048}\cdot(2^{2048}-1)\) \(2^{1024}\cdot(2^{1024}-1)+2^{1024}-1\) 2049 4106
\(2^{4096}-1,...,2^{4096}\cdot(2^{4096}-1)\) \(2^{2048}\cdot(2^{2048}-1)+2^{2048}-1\) 4097 8203
\(2^{8192}-1,...,2^{8192}\cdot(2^{8192}-1)\) \(2^{4096}\cdot(2^{4096}-1)+2^{4096}-1\) 8193 16396
\(2^{16384}-1,...,2^{33}\cdot(2^{16384}-1)\) \(2^{8192}\cdot(2^{8192}-1)+2^{8192}-1\) 34 16430
\(2^1\cdot(2^{16416}-1)\) \(2^{33}\cdot(2^{16384}-1)+2^1\cdot (2^{32}-1)\) 1 16431
\(2^{16417}-1\) \(2^1\cdot(2^{16416}-1)+1\) 1 16432
\(2^{34}\cdot(2^{16384}-1),...,2^{16384}\cdot(2^{16384}-1)\) \(2^{33}\cdot(2^{16384}-1)+2^{33}\cdot(2^{16384}-1)\) 16351 32783
\(2^{32768}-1,...,2^{32768}\cdot(2^{32768}-1),\) \(2^{16384}\cdot(2^{16384}-1)+2^{16384}-1\) 32769 65552
\(2^{65536}-1,...,2^{16417}\cdot(2^{65536}-1)\) \(2^{32768}\cdot(2^{32768}-1)+2^{32768}-1\) 16418 81970
\(2^{81953}-1,...,2^{81953}\cdot(2^{81953}-1)\) \(2^{81953}\cdot(2^{81953}-1)+2^{81953}-1\) 81954 163924
\(2^{163906}-1,...,2^{16417}\cdot(2^{163906}-1)\) \(2^{81953}\cdot(2^{81953}-1)+2^{81953}-1\) 16418 180342
\(2^1\cdot(2^{180322}-1),...,2^{180323}\cdot(2^{180322}-1)\) \(2^{16417}\cdot(2^{163906}-1)+2^1\cdot(2^{16416}-1)\) 180323 360665
\(2^1\cdot(2^{360644}-1),...,2^{360645}\cdot(2^{360644}-1)\) \(2^{180323}\cdot(2^{180322}-1)+2^1\cdot(2^{180322}-1)\) 360645 721310
\(2^1\cdot(2^{721288}-1),...,2^{721289}\cdot(2^{721288}-1)\) \(2^{360645}\cdot(2^{360644}-1)+2^1\cdot(2^{360644}-1)\) 721289 1442599
\(2^1\cdot(2^{1442576}-1),...,2^{1442577}\cdot(2^{1442576}-1)\) \(2^{721289}\cdot(2^{721288}-1)+2^1\cdot(2^{721288}-1)\) 1442577 2885176
\(2^1\cdot(2^{2885152}-1),...,2^{2885153}\cdot(2^{2885152}-1)\) \(2^{1442577}\cdot(2^{1442576}-1)+2^1\cdot(2^{1442576}-1)\) 2885153 5770329
\(2^1\cdot(2^{5770304}-1),...,2^{5770305}\cdot(2^{5770304}-1)\) \(2^{2885153}\cdot(2^{2885152}-1)+2^1\cdot(2^{2885152}-1)\) 5770305 11540634
\(2^1\cdot(2^{11540608}-1),...,2^{11540609}\cdot(2^{11540608}-1)\) \(2^{5770305}\cdot(2^{5770304}-1)+2^1\cdot(2^{5770304}-1)\) 11540609 23081243
\(2^1\cdot(2^{23081216}-1),...,2^{16417}\cdot(2^{23081216}-1)\) \(2^{11540609}\cdot(2^{11540608}-1)+2^1\cdot(2^{11540608}-1)\) 16417 23097660
\(2^{23097633}-1\) \(2^{16417}\cdot(2^{23081216}-1)+2^{16417}-1\) 1 23097661

The conjecture says that \(l(2^{23097633}-1)\le l(23097633)+23097633-1=23097661\).

In the machine-readable format:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^1*(2^32-1),
2^2*(2^32-1),...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,...,2^128*(2^128-1),
2^256-1,...,2^256*(2^256-1),
2^512-1,...,2^512*(2^512-1),
2^1024-1,...,2^1024*(2^1024-1),
2^2048-1,...,2^2048*(2^2048-1),
2^4096-1,...,2^4096*(2^4096-1),
2^8192-1,...,2^8192*(2^8192-1),
2^16384-1,...,2^33*(2^16384-1),
2^1*(2^16416-1),
2^16417-1,
2^34*(2^16384-1),...,2^16384*(2^16384-1),
2^32768-1,...,2^32768*(2^32768-1),
2^65536-1,...,2^16417*(2^65536-1),
2^81953-1,...,2^81953*(2^81953-1),
2^163906-1,...,2^16417*(2^163906-1),
2^1*(2^180322-1),...,2^180323*(2^180322-1),
2^1*(2^360644-1),...,2^360645*(2^360644-1),
2^1*(2^721288-1),...,2^721289*(2^721288-1),
2^1*(2^1442576-1),...,2^1442577*(2^1442576-1),
2^1*(2^2885152-1),...,2^2885153*(2^2885152-1),
2^1*(2^5770304-1),...,2^5770305*(2^5770304-1),
2^1*(2^11540608-1),...,2^11540609*(2^11540608-1),
2^1*(2^23081216-1),...,2^16417*(2^23081216-1),
2^23097633-1

We can also repair the chain for \(2^{31942247}-1\):

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^2*(2^4-1),
2^6-1,...,2^1*(2^6-1)
2^2*(2^6-1),...,2^6*(2^6-1)
2^12-1,...,2^12*(2^12-1),
2^24-1,...,2^24*(2^24-1),
2^48-1,...,2^48*(2^48-1),
2^96-1,...,2^7*(2^96-1),
2^1*(2^102-1),
2^103-1,
2^8*(2^96-1),...,2^96*(2^96-1),
2^192-1,...,2^192*(2^192-1),
2^384-1,...,2^103*(2^384-1),
2^487-1,...,2^487*(2^487-1),
2^974-1,...,2^974*(2^974-1)
2^1948-1,...,2^1948*(2^1948-1),
2^3896-1,...,2^3896*(2^3896-1),
2^7792-1,...,2^7792*(2^7792-1),
2^15584-1,...,2^15584*(2^15584-1),
2^31168-1,...,2^31168*(2^31168-1),
2^62336-1,...,2^62336*(2^62336-1),
2^124672-1,...,2^103*(2^124672-1),
2^1*(2^124774-1),...,2^124775*(2^124774-1),
2^1*(2^249548-1),...,2^249549*(2^249548-1)
2^1*(2^499096-1),...,2^499097*(2^499096-1),
2^1*(2^998192-1),...,2^998193*(2^998192-1),
2^1*(2^1996384-1),...,2^1996385*(2^1996384-1),
2^1*(2^3992768-1),...,2^3992769*(2^3992768-1),
2^1*(2^7985536-1),...,2^7985537*(2^7985536-1),
2^1*(2^15971072-1),...,2^15971073*(2^15971072-1),
2^1*(2^31942144-1),...,2^103*(2^31942144-1),
2^31942247-1

This chain has length 31942276. \(l(2^{31942247}-1)\le 31942276\le l(31942247)+31942247-1=30+31942247-1=31942276\).

We can also repair the chain for \(2^{32364653}-1\):

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^2*(2^4-1),
2^6-1,...,2^6*(2^6-1),
2^12-1,...,2^1*(2^12-1),
2^2*(2^12-1),...,2^12*(2^12-1),
2^24-1,...,2^24*(2^24-1),
2^48-1,...,2^48*(2^48-1),
2^96-1,...,2^13*(2^96-1),
2^1*(2^108-1),
2^109-1,
2^14*(2^96-1),...,2^96*(2^96-1),
2^192-1,...,2^192*(2^192-1),
2^384-1,...,2^109*(2^384-1),
2^493-1,...,2^493*(2^493-1),
2^986-1,...,2^986*(2^986-1),
2^1972-1,...,2^1972*(2^1972-1),
2^3944-1,...,2^3944*(2^3944-1),
2^7888-1,...,2^7888*(2^7888-1),
2^15776-1,...,2^15776*(2^15776-1),
2^31552-1,...,2^31552*(2^31552-1),
2^63104-1,...,2^109*(2^63104-1),
2^1*(2^63212-1),...,2^63213*(2^63212-1),
2^1*(2^126424-1),...,2^126425*(2^126424-1),
2^1*(2^252848-1),...,2^252849*(2^252848-1),
2^1*(2^505696-1),...,2^505697*(2^505696-1),
2^1*(2^1011392-1),...,2^1011393*(2^1011392-1),
2^1*(2^2022784-1),...,2^2022785*(2^2022784-1),
2^1*(2^4045568-1),...,2^4045569*(2^4045568-1),
2^1*(2^8091136-1),...,2^8091137*(2^8091136-1),
2^1*(2^16182272-1),...,2^16182273*(2^16182272-1),
2^1*(2^32364544-1),...,2^109*(2^32364544-1),
2^32364653-1

This chain has length 32364682. \(l(2^{32364653}-1)\le 32364682\le l(32364653)+32364653-1=30+32364653-1=32364682\).

The 9th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,
680564733841876926908302470789826871295, // 2^128 - 1 + 2^64 * (2^64 - 1)
2^64*(2^65-1),
2^32*(2^97-1),...,2^128*(2^97-1),
2^225-1,...,2^128*(2^225-1),
2^353-1,...,2^353*(2^353-1),
2^706-1,...,2^706*(2^706-1),
2^1412-1,...,2^1412*2^1412-1),
2^2824-1,...,2^2824*(2^2824-1),
2^5648-1,...,2^5648*(2^5648-1),
2^11296-1,...,2^11296*(2^11296-1),
2^22592-1,...,2^22592*(2^22592-1),
2^45184-1,...,2^45184*(2^45184-1),
2^90368-1,...,2^90368*(2^90368-1),
2^180736-1,...,2^180736*(2^180736-1),
2^361472-1,...,2^361472*(2^361472-1),
2^722944-1,...,2^129*(2^722944-1),
2^64*(2^723009-1),...,2^722944*(2^723009-1),
2^1445953-1,...,2^1445953*(2^1445953-1),
2^2891906-1,...,2^2891906*(2^2891906-1),
2^5783812-1,...,2^5783812*(2^5783812-1),
2^11567624-1,...,2^129*(2^11567624-1),
2^32*(2^11567721-1),...,2^11567624*(2^11567721-1),
2^23135345-1

This chain has length 23135373. \(l(2^{23135345}-1)\le 23135373=l(23135345)+23135345-1=29+23135345-1=23135373\).

The 12th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,...,2^128*(2^128-1),
2^256-1,...,2^256*(2^256-1),
2^512-1,...,2^512*(2^512-1),
2^1024-1,...,2^1024*(2^1024-1),
2^2048-1,
2^2048-1+2^1024 (2^1024-1),
2^1024*(2^1025-1),
2^512*(2^1537-1),...,2^2048*(2^1537-1),
2^3585-1,...,2^2048*(2^3585-1),
2^5633-1,...,2^5633*(2^5633-1),
2^11266-1,...,2^11266*(2^11266-1),
2^22532-1,...,2^22532*(2^22532-1),
2^45064-1,...,2^45064*(2^45064-1),
2^90128-1,...,2^90128*(2^90128-1),
2^180256-1,...,2^2049*(2^180256-1),
2^1024*(2^181281-1),...,2^180256*(2^181281-1),
2^361537-1,...,2^361537*(2^361537-1),
2^723074-1,...,2^723074*(2^723074-1),
2^1446148-1,...,2^1446148*(2^1446148-1),
2^2892296-1,...,2^2892296*(2^2892296-1),
2^5784592-1,...,2^5784592*(2^5784592-1),
2^11569184-1,...,2^2049*(2^11569184-1),
2^512*(2^11570721-1),...,2^11569184*(2^11570721-1),
2^23139905-1

This chain has length 23139933. \(l(2^{23139905}-1)\le 23139933=l(23139905)+23139905-1=29+23139905-1=23139933\).

The 13th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,
36893488143124135935, // 2^64-1 + 2^32*(2^32-1)
2^32*(2^33-1),
2^16*(2^49-1),...,2^64*(2^49-1)
2^113-1,...,2^64*(2^113-1),
2^177-1,...,2^177*(2^177-1),
2^354-1,...,2^354*(2^354-1),
2^708-1,...,2^708*(2^708-1),
2^1416-1,...,2^1416*(2^1416-1),
2^2832-1,...,2^2832*(2^2832-1),
2^5664-1,...,2^5664*(2^5664-1),
2^11328-1,...,2^65*(2^11328-1),
2^32*(2^11361-1),...,2^11328*(2^11361-1),
2^22689-1,...,2^22689*(2^22689-1),
2^45378-1,...,2^45378*(2^45378-1),
2^90756-1,...,2^90756**(2^90756-1),
2^181512-1,...,2^181512*(2^181512-1),
2^363024-1,...,2^363024*(2^363024-1),
2^726048-1,...,2^726048*(2^726048-1),
2^1452096-1,...,2^1452096*(2^1452096-1),
2^2904192-1,...,2^2904192*(2^2904192-1),
2^5808384-1,...,2^5808384*(2^5808384-1),
2^11616768-1,...,2^65*(2^11616768-1),
2^16*(2^11616817-1),...,2^11616768*(2^11616817-1),
2^23233585-1,

This chain has length 23233613. \(l(2^{23233585}-1)\le 23233613=l(23233585)+23233585-1=29+23233585-1=23233613\).

The 14th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,
2^32-1+2^16*(2^16-1),
2^16*(2^17-1),
2^8*(2^25-1),...,2^32*(2^25-1),
2^57-1,...,2^32*(2^57-1),
2^89-1,...,2^89*(2^89-1),
2^178-1,...,2^178*(2^178-1),
2^356-1,...,2^356*(2^356-1),
2^712-1,...,2^712*(2^712-1),
2^1424-1,...,2^1424*(2^1424-1),
2^2848-1,...,2^2848*(2^2848-1),
2^5696-1,...,2^5696*(2^5696-1),
2^11392-1,...,2^11392*(2^11392-1),
2^22784-1,...,2^33*(2^22784-1),
2^16*(2^22801-1),...,2^22784*(2^22801-1),
2^45585-1,...,2^45585*(2^45585-1),
2^91170-1,...,2^91170*(2^91170-1),
2^182340-1,...,2^182340*(2^182340-1),
2^364680-1,...,2^364680*(2^364680-1),
2^729360-1,...,2^729360*(2^729360-1),
2^1458720-1,...,2^1458720*(2^1458720-1),
2^2917440-1,...,2^2917440*(2^2917440-1),
2^5834880-1,...,2^5834880*(2^5834880-1),
2^11669760-1,...,2^33*(2^11669760-1),
2^8*(2^11669785-1),...,2^11669760*(2^11669785-1),
2^23339545-1

This chain has length 23339573. \(l(2^{23339545}-1)\le 23339573=l(23339545)+23339545-1=29+23339545-1=23339573\).

The 8th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,...,2^32*(2^32-1),
2^64-1,...,2^64*(2^64-1),
2^128-1,...,2^128*(2^128-1),
2^256-1,
2^256-1+2^128*(2^128-1),
2^128*(2^129-1),
2^64*(2^193-1),...,2^256*(2^193-1),
2^449-1,...,2^256*(2^449-1),
2^705-1,...,2^705*2^705-1),
2^1410-1,...,2^1410*(2^1410-1),
2^2820-1,...,2^2820*(2^2820-1),
2^5640-1,...,2^5640*(2^5640-1),
2^11280-1,...,2^11280*(2^11280-1),
2^22560-1,...,2^22560*(2^22560-1),
2^45120-1,...,2^45120*(2^45120-1),
2^90240-1,...,2^90240*(2^90240-1),
2^180480-1,...,2^180480*(2^180480-1),
2^360960-1,...,2^257*(2^360960-1),
2^128*(2^361089-1),...,2^360960*(2^361089-1),
2^722049-1,...,2^722049*(2^722049-1),
2^1444098-1,...,2^1444098*(2^1444098-1),
2^2888196-1,...,2^2888196*(2^2888196-1),
2^5776392-1,...,2^5776392*(2^5776392-1),
2^11552784-1,...,2^257*(2^11552784-1),
2^64*(2^11552977-1),...,2^11552784*(2^11552977-1),
2^23105761-1,

This chain has length 23105789. \(l(2^{23105761}-1)\le 23105789=l(23105761)+23105761-1=29+23105761-1=23105789\).

The 16th non-Hansen:

1,
2,
2^2-1,...,2^2*(2^2-1),
2^4-1,...,2^4*(2^4-1),
2^8-1,...,2^8*(2^8-1),
2^16-1,...,2^16*(2^16-1),
2^32-1,
8589869055, // 2^32-1+2^16*(2^16-1),
2^16*(2^17-1),
2^8*(2^25-1),...,2^32*(2^25-1),
2^57-1,...,2^32*(2^57-1),
2^89-1,...,2^89*(2^89-1),
2^178-1,...,2^178*(2^178-1),
2^356-1,...,2^356*(2^356-1),
2^712-1,...,2^712*(2^712-1),
2^1424-1,...,2^1424*(2^1424-1),
2^2848-1,...,2^2848*(2^2848-1),
2^5696-1,...,2^5696*(2^5696-1),
2^11392-1,...,2^11392*(2^11392-1),
2^22784-1,...,2^33*(2^22784-1),
2^8*(2^22809-1),...,2^22784*(2^22809-1),
2^45593-1,...,2^45593*(2^45593-1),
2^91186-1,...,2^91186*(2^91186-1),
2^182372-1,...,2^182372*(2^182372-1),
2^364744-1,...,2^364744*(2^364744-1),
2^729488-1,...,2^729488*(2^729488-1),
2^1458976-1,...,2^1458976*(2^1458976-1),
2^2917952-1,...,2^2917952*(2^2917952-1),
2^5835904-1,...,2^5835904*(2^5835904-1),
2^11671808-1,...,2^33*(2^11671808-1),
2^16*(2^11671825-1),...,2^11671808*(2^11671825-1),
2^23343633-1,

This chain has length 23343661. \(l(2^{23343633}-1)\le 23343661=l(23343633)+23343633-1=29+23343633-1=23343661\).

The 27th non-Hansen:

1,
2,
2^2-1,...,2^2(2^2-1),
2^4-1,...,2^4(2^4-1),
2^8-1,...,2^8(2^8-1),
2^16-1,...,2^1(2^16-1),
2^2(2^16-1),...,2^16(2^16-1),
2^32-1,...,2^32(2^32-1),
2^64-1,...,2^64(2^64-1),
2^128-1,...,2^128(2^128-1),
2^256-1,...,2^256(2^256-1),
2^512-1,...,2^512(2^512-1),
2^1024-1,...,2^1024(2^1024-1),
2^2048-1,...,2^2048(2^2048-1),
2^4096-1,...,2^4096(2^4096-1),
2^8192-1,...,2^8192(2^8192-1),
2^16384-1,...,2^17(2^16384-1),
2^18(2^16384-1),...,2^16384(2^16384-1),
2^1(2^16400-1),
2^16401-1,
2^32768-1,...,2^16401(2^32768-1),
2^16402(2^32768-1),...,2^49169(2^32768-1),
2^49169-1,
2^81937-1,...,2^16401(2^81937-1),
2^1(2^98337-1),...,2^81937(2^98337-1),
2^180274-1,...,2^180274(2^180274-1),
2^360548-1,...,2^360548(2^360548-1),
2^721096-1,...,2^721096(2^721096-1),
2^1442192-1,...,2^1442192(2^1442192-1),
2^2884384-1,...,2^2884384(2^2884384-1),
2^5768768-1,...,2^5768768(2^5768768-1),
2^11537536-1,...,2^11537536(2^11537536-1),
2^23075072-1,...,2^16401(2^23075072-1),
2^16402(2^23075072-1),...,2^23091473(2^23075072-1),
2^23091473-1,
2^46166545-1,

This chain has length 46166574.  \(l(2^{46166545}-1)\le 46166574=l(46166545)+46166545-1=30+46166545-1=46166574\).