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Definitions
An addition chain is a finite list of integers starting with 1 where each value
(called an element) apart from the first is the sum of two prior elements:

1 = a0 < a1 < · · · < ar = n, ai = aj + ak, i > j ≥ k ≥ 0. We say this
addition chain has length r for target n. The shortest addition chain for n is
said to have length l(n).
We define the following useful functions:

v(n) =


0 n = 0

v(n−1
2 ) + 1 n odd

v(n2 ) n even
, λ(n) = ⌊log2(n)⌋, s(n) = l(n)− λ(n)

We can extend some of these functions to sequences of integers. This is known as
the addition sequence problem. For a set A we define l(A) as the shortest chain
that contains all elements of A. λ(A) = λ(max(A)) and s(A) = l(A)− λ(A).

Conjectures
This paper concerns the Scholz-Brauer conjecture l(2n−1) ≤ l(n)+n−1 [4] and
more precisely a violation of equality in this conjecture l(2n− 1) < l(n)+n− 1.
The Knuth-Stolarsky conjecture is related and bounds v(n) with the small step
count of n denoted s(n) such that v(n) ≤ 2s(n). For a fixed λ obviously 2λ − 1
has the largest v (binary digit sum) values so this conjecture implies a lower
bound for l(2n − 1). Now we can restate this conjecture as s(2n − 1) ≤ l(n) and
in fact this is useful for what will follow.

History of the Conjecture
Stolarsky [5] seems to have first noted equality for 1 ≤ n ≤ 8. Knuth [3] noted
equality for n ≤ 11 and asked if equality always held in the last question of
§4.6.3. Thurber [6] attributed the range n ≤ 14 to Knuth and proved equality
for n ≤ 18 along with n ∈ {20, 24, 32}. Flammenkamp [2] extended this to
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n ≤ 28 although the assumed the conjecture v(n) ≤ 2s(n). My own calculations
[1] extended this to n ≤ 64. Later code would extend this to l(n) ≤ 9 so that
includes n ≤ 126.

Using the Factorization of 2n − 1

Since l(a · b) ≤ l(a)+ l(b) factorization might be an approach to find counterex-
amples. If n is composite n = a·b, a > 1 then 2n−1 = (2a−1)(2a·b−a+...+2a+1).
There doesn’t seem much scope here since the first factor (2a−1) is in the same
form as the number we are trying to find a counterexample with. The second
term has single bits spread out in a way that makes it hard to envision carries
helping construct in shorter sequences. If n is prime then the factors I looked
at tended to have large hamming weights.
I decided then to look at non-unique factorizations. We use 2n−1 =

∑z
i=1 ai ·xi

since this has been shown to be the structure of all shortest addition chains [7].
Here A = a1, ..., az and X = x1, ..., xz are two addition sequences such that
l(2n − 1) ≤ l(A) + l(X) + z − 1. The bound is sharp for at least one selection
of A,X.
One possible strategy for selecting a sequence A is to enumerate all shortest ad-
dition chains for some 2m− 1,m < n. We can select the elements of A based on
some fitness for building 2n−1. The strategy used was to look at all elements of
the form 2di(2bi − 1). We can extract the sequence of B = b1, ..., bz values from
the addition chain for 2m− 1 and look for sequences B where l(B) > s(2m− 1).
It’s not at all clear that such sequences should exist but a large amount of com-
putation shows that they do. The smallest example is in the shortest addition
chains for 247 − 1:
1, 2, 3, 6, 12, 24, 30, 60, 120, 240, 480, 483, 963, 1926, 3852, 7704, 8187,
8189, 16376, 32752, 65504, 131008, 262016, 524032, 1048064, 2096128, 4192256,
8384512, 16769024, 16777213, 16777215, 33554428, 67108856, 134217712, 268435424,
536870848, 1073741696, 2147483392, 4294966784, 8589933568, 17179867136,
34359734272, 68719468544, 137438937088, 274877874176, 549755748352, 1099511496704,
2199022993408, 4398045986816, 8796091973632, 17592183947264, 35184367894528,
70368735789056, 140737471578112, 140737488355327
Here by abusing the notation we can select B ⊆ {1, 2, 4, 11, 23, 24, 47} and hence
A ⊆ {21 − 1, 22 − 1, 2 · (24 − 1), 8 · (211 − 1), 4 · (223 − 1), 224 − 1, 247 − 1}. Note
here that s(247 − 1) = l(47) = 8 but l({1, 2, 4, 11, 23, 24, 47}) = 9. We should
look for numbers n where l(n) > l(B) + l(Y ) − z + 1 where Y = y1, ..., yz and
n =

∑z
i=1 bi · yi. While we can’t use the B values to create a shortest addition

chain for n we can use the A values derived from them to try and form an
addition chains for 2n − 1.
Since the crouton algorithm for addition chains works by enumerating sequences
like B and then using what it can infer about the values in Y to prune. We can
find example numbers very quickly even over very large ranges.
We find the addition chain:
1, 2, ?, ?, 11 ?, 23, 24, 47, 71, 142, 284, 568, 1136, 2272, 4544, 9088, 18176, 36352,
36363, 72715, 145430, 290860, 581720, 1163440, 2326880, 4653760, 4653783,
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9307543
Here we leave the uncertainty about the start of the chain for n as question
marks. We then convert this to a chain for 29307543 − 1 by starting with the
special chain for 247 − 1 we showed earlier.
The following table shows the breakdown:
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Elements How First Element Formed Elements
In Row

Chain
Length So

Far
1 1 0
2 1 + 1 1 1
3 2 + 1 1 2

6, ..., 24 3 + 3 3 5
2 · (24 − 1), ..., 25 · (24 − 1) 24 + 6 5 10

483 25 · (24 − 1) + 3 1 11
963, ..., 23 · 963 483 + 25 · (24 − 1) 4 15

8187 23 · 963 + 483 1 16
8189 8187 + 2 1 17

23 ·(211−1), ..., 213 ·(211−1) 8189 + 8187 11 28
16777213 213 · (211 − 1) + 8189 1 29
224 − 1 16777213 + 2 1 30

22 ·(223−1), ..., 224 ·(223−1) 224 − 1 + 16777213 23 53
247 − 1, ..., 224 · (247 − 1) 224 · (223 − 1) + 224 − 1 25 78
271 − 1, ..., 271 · (271 − 1) 224 · (247 − 1) + 224 − 1 72 150

2142 − 1, ..., 2142 · (2142 − 1) 271 · (271 − 1) + 271 − 1 143 293
2284 − 1, ..., 2284 · (2284 − 1) 2142 · (2142 − 1) + 2142 − 1 285 578
2568 − 1, ..., 2568 · (2568 − 1) 2284 · (2284 − 1) + 2284 − 1 569 1147
21136−1, ..., 21136 ·(21136−1) 2568 · (2568 − 1) + 2568 − 1 1137 2284
22272−1, ..., 22272 ·(22272−1) 21136 · (21136 − 1)+ 21136 − 1 2273 4557
24544−1, ..., 24544 ·(24544−1) 22272 · (22272 − 1)+ 22272 − 1 4545 9102
29088−1, ..., 29088 ·(29088−1) 24544 · (24544 − 1)+ 24544 − 1 9089 18191

218176 − 1, ..., 218176 ·
(218176 − 1)

29088(29088 − 1) + 29088 − 1 18177 36368

236352−1, ..., 214 ·(236352−1) 218176·(218176−1)+218176−1 15 36383
23(236363 −

1), ..., 236352(236363 − 1)
214 ·(236352−1)+ 23 ·(211−1) 36350 72733

272715 − 1, ..., 272715 ·
(272715 − 1)

236352·(236363−1)+236352−1 72716 145449

2145430 − 1, ..., 2145430 ·
(2145430 − 1)

272715·(272715−1)+272715−1 145431 290880

2290860 − 1, ..., 2290860 ·
(2290860 − 1)

2145430 · (2145430 −
1) + 2145430 − 1

290861 581741

2581720 − 1, ..., 2581720 ·
(2581720 − 1)

2290860 · (2290860 − 1) +
2290860 − 1

581721 1163462

21163440 − 1, ..., 21163440 ·
(21163440 − 1)

2581720 · (2581720 − 1) +
2581720 − 1

1163441 2326903

22326880 − 1, ..., 22326880 ·
(22326880 − 1)

21163440 · (21163440 − 1) +
21163440 − 1

2326881 4653784

24653760 − 1, ..., 225 ·
(24653760 − 1)

22326880 · (22326880 − 1) +
22326880 − 1

26 4653810

22(24653783 −
1), · · · , 24653760(24653783−1)

225 · (24653760 − 1) + 22 ·
(223 − 1)

4653759 9307569

29307543 − 1 24653760 · (24653783 − 1) +
24653760 − 1

1 93075704



Computer calculations show that l(9307543) = 29 giving the following con-
tradiction to exact equality in the Scholz-Brauer:

l(29307543 − 1) ≤ 9307570 < l(9307543) + 9307543− 1 = 9307571
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