Exact Equality in the Scholz-Brauer Conjecture

For mathematical definitions see the top-level Addition Chains.

This is the smallest example I have so far.

Elements How First Element Formed Elements In Row Chain Length So Far
\(1\) 1 0
\(2\) \(1+1\) 1 1
\(3\) \(2+1\) 1 2
\(6,...,24\) \(3+3\) 3 5
\(2^1\cdot(2^4-1),...,2^5\cdot(2^4-1)\) \(24+6\) 5 10
\(483\) \(2^5\cdot  (2^4 - 1)+3\) 1 11
\(963,...,2^3\cdot 963\) \(483 + 2^5\cdot (2^4-1)\) 4 15
\(8187\) \(2^3\cdot 963 + 483\) 1 16
\(8189\) \(8187 + 2\) 1 17
\(2^3\cdot(2^{11}-1),...,2^{13}\cdot(2^{11}-1)\) \(8189 + 8187\) 11 28
\(16777213\) \(2^{13}\cdot (2^{11}-1) + 8189\) 1 29
\(2^{24}-1\) \(16777213 + 2\) 1 30
\(2^2\cdot(2^{23}-1),...,2^{24}\cdot(2^{23}-1)\) \(2^{24}-1 + 16777213\) 23 53
\(2^{47}-1,...,2^{47}\cdot(2^{47}-1)\) \(2^{24} \cdot (2^{23}-1)+2^{24}-1\) 48 101
\(2^{94}-1,...,2^{94}\cdot(2^{94}-1)\) \(2^{47}\cdot(2^{47}-1)+2^{47}-1\) 95 196
\(2^{188}-1,...,2^{188}\cdot(2^{188}-1)\) \(2^{94}\cdot(2^{94}-1)+2^{94}-1\) 189 385
\(2^{376}-1,...,2^{376}\cdot(2^{376}-1)\) \(2^{188}\cdot(2^{188}-1)+2^{188}-1\) 377 762
\(2^{752}-1,...,2^{752}\cdot(2^{752}-1)\) \(2^{376}\cdot(2^{376}-1)+2^{376}-1\) 753 1515
\(2^{1504}-1,...,2^{1504}\cdot(2^{1504}-1)\) \(2^{752}\cdot(2^{752}-1)+2^{752}-1\) 1505 3020
\(2^{3008}-1,...,2^{3008}\cdot(2^{3008}-1)\) \(2^{1504}\cdot(2^{1504}-1)+2^{1504}-1\) 3009 6029
\(2^{6016}-1,...,2^{14}\cdot(2^{6016}-1)\) \(2^{3008}\cdot(2^{3008}-1)+2^{3008}-1\) 15 6044
\(2^3\cdot(2^{6027}-1),...,2^{6016}\cdot(2^{6027}-1)\) \(2^{14}\cdot(2^{6016}-1)+2^3\cdot(2^{11}-1)\) 6014 12058
\(2^{12043}-1,...,2^{12043}\cdot(2^{12043}-1)\) \(2^{6016}\cdot(2^{6027}-1)+2^{6016}-1\) 12044 24102
\(2^{24086}-1,...,2^{24086}\cdot(2^{24086}-1)\) \(2^{12043}\cdot(2^{12043}-1)+2^{12043}-1\) 24087 48189
\(2^{48172}-1,...,2^{48172}\cdot(2^{48172}-1)\) \(2^{24086}\cdot(2^{24086}-1)+2^{24086}-1\) 48173 96362
\(2^{96344}-1,...,2^{96344}\cdot(2^{96344}-1)\) \(2^{48172}\cdot(2^{48172}-1)+2^{48172}-1\) 96345 192707
\(2^{192688}-1,...,2^{192688}\cdot(2^{192688}-1)\) \(2^{96344}\cdot(2^{96344}-1)+2^{96344}-1\) 192689 385396
\(2^{385376}-1,...,2^{385376}\cdot(2^{385376}-1)\) \(2^{192688}\cdot(2^{192688}-1)+2^{192688}-1\) 385377 770773
\(2^{770752}-1,...,2^{25}\cdot(2^{770752}-1)\) \(2^{385376}\cdot(2^{385376}-1)+2^{385376}-1\) 26 770799
\(2^2\cdot(2^{770775}-1),...,2^{770752}\cdot(2^{770775}-1)\) \(2^{25}\cdot(2^{770752}-1)+2^2\cdot(2^{23}-1)\) 770751 1541550
\(2^{1541527}-1\) \(2^{770752}\cdot(2^{770775}-1)+2^{770752}-1\) 1 1541551

So we have \(l(2^{1541527}-1)\le 1541551 < l(1541527)+1541527-1=26+1541527-1=1541552\).

This chain in a machine-readable format:

1,
2,
3,
6,...,24,
2^1*(2^4-1),...,2^5*(2^4-1),
483,
963,...,7704,
8187,
8189,
2^3*(2^11-1),...,2^13*(2^11-1),
16777213,
2^24-1,
2^2*(2^23-1),...,2^24*(2^23-1),
2^47-1,...,2^47*(2^47-1),
2^94-1,...,2^94*(2^94-1),
2^188-1,...,2^188*(2^188-1),
2^376-1,...,2^376*(2^376-1),
2^752-1,...,2^752*(2^752-1),
2^1504-1,...,2^1504*(2^1504-1),
2^3008-1,...,2^3008*(2^3008-1),
2^6016-1,...,2^14*(2^6016-1),
2^3*(2^6027-1),...,2^6016*(2^6027-1),
2^12043-1,...,2^12043*(2^12043-1),
2^24086-1,...,2^24086*(2^24086-1),
2^48172-1,...,2^48172*(2^48172-1),
2^96344-1,...,2^96344*(2^96344-1),
2^192688-1,...,2^192688*(2^192688-1),
2^385376-1,...,2^385376*(2^385376-1),
2^770752-1,...,2^25*(2^770752-1),
2^2*(2^770775-1),...,2^770752*(2^770775-1),
2^1541527-1,